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Abstract

Determination of all the coefficients in the crack tip field expansion for monoclinic
materials under two-dimensional deformation is presented in this report. For monoclinic
materials with a plane of material symmetry at x3 = 0, the in-plane deformation is decoupled from
the anti-plane deformation. In the case of in-plane deformation, utilizing conservation laws of
elasticity and Betti’s reciprocal theorem, together with selected auxiliary fields, T-stress and
third-order stress coefficients near the crack tip are evaluated first from path-independent line
integrals. To determine the T-stress terms using the J-integral and Betti’s reciprocal work
theorem, auxiliary fields under a concentrated force and moment acting at the crack tip are used
respectively. Through the use of the Stroh formalism in anisotropic elasticity, analytical
expressions for all the coefficients including the stress intensity factors are derived in a compact
form that has surprisingly simple structure in terms of one of the Barnett-Lothe tensors, L. The
solution forms for degenerated materials, orthotropic, and isotropic materials are also presented.

Introduction

The use of fracture mechanics to assess the failure behavior in a flawed structure requires
the identification of critical parameters which govern the severity of stress and deformation field
in the vicinity of the flaw, and which can be evaluated using information obtained from the flaw
geometry, loading, and material properties. In the linear elastic solids, stress intensity factors, k; (i
= L II, IIl), represent the leading singular terms in the Williams eigenfunction expansion series
near a crack tip. k; are often assumed to be unique parameters associated with crack extension.
The physical implications of the higher-order non-singular terms have been noted by Cotterell
(1966). Especially, the so-called T-stress, second term of the crack tip stress field which
represents the constant normal stress parallel to the crack surfaces, has been found as an
additional parameter in characterizing the behavior of a crack (Larsson and Carlsson, 1973; Rice,
1974). Cotterell and Rice (1980) showed that T-stress substantially influences the fracture path
stability of a mode-I crack. The stress biaxiality parameter (Leevers and Radon, 1982; Sham,
1991) has been tabulated as a function of relative crack lengths and overall geometry in many
fracture test specimens for the isotropic solid using computational techniques (e.g., Kfouri, 1986
and Sham, 1989 and 1991). Kardomateas e al. (1993) examined the third-term of the Williams
solution and concluded its significance in the center-cracked and single-edge specimens with
short crack lengths.

In anisotropic linear elastic solids, Gao and Chiu (1992) examined the T-stress term of a
crack in infinite orthotropic solids under mode-I loading. Because of the material anisotropy



involved, the T-stress term is affected by the material properties. It is also expected that, in
general, mixed-mode crack behavior and the biaxiality parameter are also dependent on the
material anisotropy. Thus, it is essential to develop efficient computational techniques to
determine T-stress term coefficients including the stress intensity factors in anisotropic cracked
materials with finite geometry. In this report, two methods based on the J-integral and Betti’s
reciprocal theorem are proposed to obtain compact forms in calculating all the stress coefficient
terms in the crack tip field expansion for monoclinic materials with a plane of material symmetry
at x3 = 0. To determine T-stress term using the J-integral, the method by Kfouri (1986) is
extended to anisotropic solids. The closed form solution of the auxiliary field, a point force
acting at the crack tip, is derived for this purpose. A path-independent integral based on the
Betti’s reciprocal work concept has been used for determining the stress intensity factors by
Stern, Becker, and Dunham (1976), Hong and Stern (1978), Sinclair, Okajima, and Griffin
(1984) for isotropic materials; Soni and Stern (1976) for orthotropic materials; and An (1987) for
rectlinearly anisotropic materials. This path-independent line integral is also extended to
determine all the stress coefficient terms with auxiliary fields.

Mathematical Formulation

In a fixed Cartesian coordinate system x;, (i = 1, 2, 3), consider a two-dimensional
deformation of an anisotropic elastic body in which the deformation field is independent of the x3
coordinate. In this report, attention focuses on the monoclinic material having three mutually
perpendicular symmetry planes and one of the planes coinciding with the coordinate plane x; = 0.
In this case, the in-plane and out-of-plane deformations are uncoupled. For in-plane deformation
the strain and stress relations can be written as

’

e=s'c (1)
T
where € =[g,, €, , ¥,,1",0 =[0,,,0,,,0,]"
or

§=s5,0,, Lj=126

;o . - . ,
where s; = s, are reduced compliance coefficients defined by S; = 8y — 38,3/ 833

Throughout the report, all indices range from 1 to 2 and the summation convention is
applied to repeated Latin index unless otherwise noted. The bold-face letters are used to represent
matrices or vectors. A comma stands for differentiation; overbar denotes complex conjugate. A
symbol Re stands for real part; Im for imaginary part.

In the absence of body forces, general solutions of the displacement vector u, the stress

function ¢, and stresses o for in-plane deformation, according to Stroh formalism (Ting, 1996),
can be represented by



2
u=Re[Y a,d,f(z,)]

: 2)
¢ =Re[) b,d, f(z,)]
or
u=RelA(f(2))d] .
¢ = Re[B(f(2))d]
0, = _(pi,Z » Op = ¢i,l “4)
where

(f(2))=diag[f(z)), f(2,)]
g =X+ Uyx,, Im[ig1>0

J(z) is an arbitrary function, d is a unknown complex constant vector to be determined.
@q, and by are the Stroh eigenvalues and corresponding eigenvectors determined by elastic
constants only. For in-plane deformation, y,, are given by the roots of the characteristics
equation:

St =280 + (25, + 84 Ju® =255 pu+ 53, =0 (5)
with positive imaginary parts. From energy consideration, Lekhnitskii (1963) showed that the
roots are either complex or purely imaginary and cannot be real. A and B are Stroh matrices
given by

A=[a, a2]=l:§l ;’2] (6)
1 2

_'u - ~ 1 _1 —
B=[b1, b2]=[ 11 fzJ’Blz [ /Jz]

(7
H—p, | ] Ky

4 2 ’ ’ — ’ ’
Po =811y = S16ly + 8155 4y = Siolly — Sy + 55, Il - (8)

The eigenvectors a, and by, are unique to an arbitrary multiplier. Introducing normalization
factors k,, we have

A=,:k1pl kzpzj,’ le:_kl‘ul _kzlu2:, 9)
k\q, k,q, k, k,

The values of kq satisfy the conditions

T
2a,b5=6,,



Based on the Stroh formalism, the matrices A and B defined in eq. (9) satisfy orthogonality
relations. For in-plane deformation, these relations can be expressed by

B'A+A"B=1 (10)
B'A+A"B =0 (11)
where
2k (g~ p) =1, 2k3(q, — p,u,) =1
It can be proved that
BB =-2iL", ' =—Im[AB™] (12)

where L is a real, symmetric, and positive definite matrix which will be used frequently in the
sequel.

Note that the normalization factors cancel each other for the term AB™ in the second
equation of (12). Therefore there is no need to introduce the normalization factors in computing
L. From eq. (12),, it is easy to get

- b d I 1 e -—-d 13
g el T s (be=d*)|-d b (13)

M+, =a+ib, pmu, =c+id,
e=ad —bc=Im[pu, (11, +1,)] (14)

For crack problems, it may be convenient to introduce a complex potential function @
(Guo, 1991) such that

®=B(f(z))B"g (15)

where g = Bd, then the displacement expression in €q. (3) and stresses in €q. (4) can be rewritten
in terms of the potential function ®

u = Re[AB" @] (16)
0, ==Re[®,,], 0, = Re[®, ] a7

The traction vector ¢ at a point on a curve I"with unit outward normal 7 is given by

do, do
t =—R — = — _
; e[ s } t Re[ ds:, (18)

where s is an arc length measured along I"as shown in Fig. 1. Thus, without loss of generality,
the traction free boundary conditions on a boundary may be written as

Re[®]=0 on I (19)



Fig. 1 The surface traction ¢ on a curved boundary I" with a unit outward normal vector n.

The resultant force and moment about the x; axis due to the surface traction ¢ acting on I"
between s; and s, (5, > 5;) are

[ " t(s)ds = Re[@(s,) - @(s,)] (20)

["ont, = xpt)ds = -Relx, @, - x,®@, - 1]

e2)
where
22 = [@,()dA

If I"encloses a region and there are concentrated force f and moment M inside the region, then
the equilibrium of the body demands that

- jrt(s) ds=f 22)

—Jr(x]t2 -x,t)ds=M (23)

Crack-tip fields

Consider a crack in the anisotropic body. Let a coordinate system be attached to the crack
tip and crack plane lies on the x, - x3 coordinate plane. The configuration is shown in Fig. 2. The
crack faces are assumed to be traction-free. Note that the crack plane may not coincide with the
symmetry plane of the material.



crack
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Fig. 2 A cracked body and a contour around a crack

To find the solution for the crack tip field, employing eq. (15) and (16) with
fo(zy) =22", we take the solutions & and @ in the form

u= Re[A<z‘5*‘>B" gl (24)
@ =B(z"*")B g (25)
where the complex variable z,, is defined by
Z, =r(cosO+pu, sinf), -mg<O0<n

g is a complex constant vector and & is the complex constant. We seek admissible values of §
subjected to a restriction in which the strain energy is bounded as r — 0, that is

—1< Re(d)

To maintain a unique solution for ® in eq. (25), we introduce a branch cut along the
negative x; axis with a convention, that is

Zgﬂ = r6+leii(6+1)n at 9 =47
Insertion of eq. (25) into traction-free boundary conditions
Re[®@]=0 at 8=1+r1

yields
r&—geiﬁ(5+g+2)g + E — 0 (26)

ra—se-m(a+5+z)g +E8=0 27)
Subtracting of eq. (27) from €q. (26) leads to
[ 7 _1g=0 (28)
where I is a 2 X 2 identity matrix. For a nontrivial solution of g, we must have

det[(ei2(5+5_+2)ﬂ' _ I)I] = (ei2(5+g+2)7r - l)I =0 (29)



or
Re(@)=(n-2)/2, n=1,2,3, - (30)

With eq. (30), from eq. (26) or (27), we have
g =-r*"%cos[2nRe(8)] g (31

Since g is a constant, from eq. (31), (30),

Im(6)=0, §=(n-2)/2 (32)
~_.113
§= g’ - 2’2727
_ga 6=0’1,27 *

that is, §is real, the vector g associated with & s real if 0=-1/2,%,32, ...; and g is pure
imaginary if §=0, 1, 2, .... It is clear from the determinant given in eq. (29) that each of the
eigenvalues & is a root of multiplicity two. Since g has two arbitrary components, we have two
independent eigenfunctions associated with the double eigenvalues J. Therefore the assumed

forms of u and ® given by eq. (24) and (25) are justified; no logarithmic type of solution form
exists.

Superimposing all the solutions with different orders of r, the crack tip field can be
constructed as

u=3 Re[A(z"")Bg,]
n=l

@ - ZB<Z5n+1>B—lgn
n=|

where §, = (n-2)/2. g, isrealforn=1, 3,5, -, 8, 1S pure imaginary for n =2, 4, 6,---, and g,
are dependent on the geometry of the cracked body, material properties, and loading conditions.
Similarly, there is no need to introduce ko in calculating o;; and u; from eq. (33).

(33)

Performing algebraic calculation and defining g, =[g,,, g.,1", the stress and
displacement components can be written as

o, = Z’(an + 1)’"6" Re{ [gnl(/lzzgfn —,ulzgl(s" )+ Enath i, (,Ltzgf” —;ulglan )]}

M, - U,

R N IO ) B
n= 1 2

Op= Z,(&; +1)’"5" Re{ I,LL [gnl(lulgla” -,uzgfn )+ 82, (gxs" ‘gfn )]}

1T M2



= Z”é o Re{ [gnl (ng;?n - Plgf " )+ 8n2 (oulp2g§" :uzp1§15 o )]}

My = H,

Z rort Re{u [gnl (%gf - QIQIE +1)+ 8n2 (.ul%gfn :uz%glé - )]} (35)
1

where ¢, =cosf + i1, sin§ .

For the leading-order term, &, = -1/2, letting g, =+/2/7 k , the singular solution and T-
stress term for the monoclinic solids can be written in the form:

1
6 =——(ko® +1,00)+T|0|+0¢") (36)
27r
O—A
1 Sl,l-
€= ke’ +kyep) )+ T 5], [+0(r") (37)
m(l I n*n ) S1,2
16

(1 M

1 1
g =50, g =5"0"

[ cos@ + s sin@ —sin@
u= /%(k,u;”+k,,u;}))+Tr{s” et :’+a)r[ SmeJ+0(r3’2) (38)

s, 8in @ cos

where 6™, u™ ..., are the n-th order terms of the crack tip field; the subscripts I or II indicates
the distribution associated with mode-I or mode-II. k =[k n. k, 1"; k; and ky are stress intensity

factors for mode-I and mode-II respectively, @ is a constant representing rigid body rotation, and

[- Y 2 2
lullu2 lu'2 :ul (O. 1)” - Re[_ 1 :u'2 - I'Ll

m=t o e | ‘ b=t o e

(0,,); =Re

1
o 2 (03); =Re 1

[ 1 1
(0);, =Re - , _
-t (Ve e AV
7 r
(012)1 =Re Sl 1 (0'12)11 =Re : ad -t
[ uz[f \/5] -t Ve e

M




1
(), = Re[ 1 (/‘llpz\/g_luzpn/gl—)J (u)y = Re[‘u

= U, -

1

s =)

1 ’ 1
=R lgE )] s P RCRNEY
My —H, = By
For the second-order term, &, = 0,
u® =Ty s“cos,O-l.-slemG or —sin@ (39)
S5y, 8in@ cosf ‘
o =T, oy =0} =0 (40)
where @ represents the rigid body rotation, and
T =-i(gyb+g,d), 0 =—i5/,(8yd + gpe) (41)

Clearly the T-stress term is dependent on the material properties in anisotropic solids.

For orthotropic materials where x; and x, coincide with the material symmetry axes, the T-

terms become
’ .
Sy, Cos @ —sin@
u® =Tr[ ! }+wr{ J oy =T

57, $in @ cos@

In isotropic solids, the second-order terms are

cos@ —sin@
u® = Ir . +or , o' =T for plane stress
E|-vsing cos @

1-v)cos6 —sinf
u® = w[( ).CO; J.;.w{ sme } , 0P =T for plane strain
~Vsin cos

For the degenerate materials, the crack tip fields are derived in Appendix A.

Auxiliary Fields associated with the Crack Tip Fields

Some auxiliary fields with higher-order singularities are needed in order to determine the
coefficients in the expansion of the crack tip field by the use of conservation laws of elasticity
and Betti’s reciprocal theorem. Since the negative integers are also the eigenvalues of the crack
problem which satisfy zero traction on the crack surfaces and satisfy the field governing
equations of the anisotropic solids, the associated eigenfunctions can be conveniently used as
auxiliary (pseduo) fields. Note that each eigenfunction with higher-order singularity has
unbounded energy near the crack tip and thus corresponds to some concentrated source at the tip.
This eigenfunction can be imagined as a self-equilibrated solution to the crack problem under
some specified loads. These auxiliary fields may be obtained by choosing the values of  in eq.
(33) as negative integers, that s,



u’ = Re[A<zA'"“>B“h ]

n

(42)

o = B<ZA,,,+1>B—1hm
0 =-Re[®,,], 0% =Re[D,] 43)
A, =-m/2,m=1,3,4,-, (44)

hm = [hml ’ hm2]T

where h, are arbitrary constant vectors. h, is real form = 1, 3, 5, -.-: h,, is pure imaginary for m =

4,6, 8,-, Utilizing eq. (22-23), the auxiliary fields, except m = 4, defined by eq. (42) yield zero

resultant force on any contour I"which encloses the crack tip shown in Fig. 2. The corresponding
resultant moment about the x;-axis, produced by the tractions acting on the contour I"is also zero

for the auxiliary fields in eq. (42). The special case of A, = -2 or m = 4 can be also directly
explained from eq. (23). In this case, the function associated with [0, A, I corresponds to the

particular solution for a crack under a concentrated moment about X3-axis, (=27 ih,,) , applied at

the crack tip; the function associated with [A,, , 01" corresponds to the homogeneous solution
which satisfies zero concentrated force and moment at the crack tip.

From eq. (42)-(44), the stress and displacement components of the auxiliary fields are

o) = (A, +Dré Re{ _{ [hml (/'lzzng - pig )+ YT ($‘z€§"' o T )]}
1 2
o3, =(A,, + Dr* Re{ 1 [hml (gZA'” —gfn )+ h,, o — TN )]} (45)
H—H,
0-1(;) =(Am + l)rAm Re{ [hml (lulglAm - ‘ungAm )+ hleultu’Z (GIAM - ngm )]}
Hy -,

a 1 + +
u, = r! Re{‘u iy [hml (Pzngm - plglAm l)"' h,, 1p2g2A"'+l - :uzplglAm+1 )]}
1 2

A+ A, +1

[hml (%gz 4" )+ R 1Q2GZAW+1 - :uz%glAmH )]} (46)

uj = i Re{
My =l

In the following two sections, stress intensity factors, T-stress term, and coefficients of
higher-order terms are determined using the J-integral and the Betti’s reciprocal theorem
including the use of above auxiliary fields.

J-Integral

(a) T-stress Term

10



J; conservation laws (Knowles and Sternberg, 1972) for a plane anisotropic elasticity
problem may be written as

Jo=] (Wn, 1w, )ds=0, k=1,2 (47)

for an arbitrary closed contour C that encloses no defects, cracks, or material inhomogeneities. In
the above equations, W is the strain energy density, W = 0,€; /2, where o, and g are the stresses
and strains respectively; ¢; are the traction components defined along the contour, f, = O, n;; n, are
the unit outward vector normal to the contour path. Letting k = ], the conservation law is reduced
to the Rice’s path-independent J-integral or the rate of energy release rate per unit of crack

extension along the x; - axis, which is given by

J=[ (c"en 12-1"u,)ds (48)

where I'is an arbitrary path which starts on the straight lower face of the crack, encloses the
crack tip and ends on the upper straight face with the positive direction in a counterclockwise
direction shown in Fig. 2. Here, the crack surfaces are assumed to be traction-free.

Consider a cracked body under the two-dimensional deformation. The components of
stress, strain, and displacement are represented by oy, €, and w,, respectively. As r — 0, the
asymptotic fields including the constant T-stress terms are given before. Now the coefficients of
the T-stress terms and third-order terms are derived using conservation laws.

In general, for the purpose of determining the coefficients g, of the term (6, 2-1/2)
in the actual crack tip stress field, we may employ the J-integral method and follow the following

procedure:
(1) find an auxiliary (pseudo) field that has singularity o; ~ r=™" as r —0. It is convenient to
select auxiliary stress field which gives zero traction on the crack surfaces and contains only

the stress singular term %!,

(i) superimpose the actual field (the mixed-mode boundary value problem, in general) on the
auxiliary field and represent the J-integral for the superimposed state as

Jo=J+J,+J, (49)
where
I = C+0") (& +e"m, 12t +£) (u, +uYJds
Ja =jr[(6c1)Tecz nl /2_(ta)Tu’(;] dS
and

Jy=J,~I-1,
= [ o7& +(*) €l 12- 17wt — (t*) ", yas

11



= jr[ore" no~t"u% - (t) u,1ds (50)

= | (oyut m — ot~ 10w, ds

i i il

where the superscript or subscript “a” denote quantities referred to the auxiliary field; J, is the J-
integral for the superimposed state; J for the actual state; and J, for the auxiliary field and J,, is
the interaction integral. In the sequel, we assume that the J-integral is path-independent for both
the actual field and the selected auxiliary fields, denoted by J and J,. Then the integral J, for the
superimposed state, thus Jy, is also path-independent. If the auxiliary fields given by eq. (42) are
used, it is readily proved that

J,#0, for A, =-1/2

J, =0, for A, <~1/2’ b

(i11) evaluate J,, as I — 0. For simplicity, I'may be taken as a circle with radius r,as r =0, the
only terms in the integrand that contribute to J,, are the cross terms between 7% in the actual
stress field and the auxiliary stress term with order r %'

(iv) carry out the routine manipulation, the exact expression for J,, can be obtained as
Jy=J,(g,) whenr —0;

(v) evaluate J, for a finite contour I"using the computed actual field and the exact auxiliary
solution; and determine the coefficients & from the value of J,, and the expression of
Jy =J,(g,) asr =0,

In extracting the T-stress in eq. (33) or g,, we make use of another auxiliary field, that is the
solution to a point force f (per unit thickness) applied at the crack tip. Under the load, Cocr.

Note that the point force f must be resisted by traction ¢ applied to some boundary C in achieving
equilibrium. In the Stroh formalism (Ting, 1996), the real form solutions due to the point-force
application can be written as

2u° =—[£I+S(6):'h (52)
T
26 =L(0)h (53)
where h=L"'f, f=[f,, f,]"
$(6) = %Re[A(ln(cosG +usin6)B"]
L(6)= —-2- Re[B(In(cos 6 + 1sin6)B" |

X1 =rcosB, x,; =rsinb.

It assumes the values

12



0 6=0

In(cosO + p, sin@) = {+ T 0=+
b ¥/4 =1

In a cylindrical coordinate system (r, 6, x3), let ¢, and tg be the traction vectors on a
cylindrical surface r = constant and on a radial plane 6 = constant, then

Lo a
tr = _";¢;9 ’ t9 = ¢,r (54)

o/ =n"t, o,=m't =n"t,, ol =m’t,
where n” =[cos@,sinf] and m” = [-sin@, cosO].
It follows from eq. (52) and (53) that

ty=9¢,=0, 05=0/,=0

o =-n"¢/r
or
oio__h Im{[(,ul,uz—l)sin0+(,ul+/,tz)cost9]cosze—sin9}
r 2rr GiS,
_f - [(/.t,,uz—1)0050—(;11+/,tz)sin9]sin29+/,tl,u2 cos@ 55)
2rr 615,
and
b —
u"=_L{s,’] In rI: ]—Im[———l [pzln 27 piln GI:,
2w d Hi= M, [ g,Ing, —g,Ing,
(56)
d -
_L{S{I In r,: :]—Im[ 1 [‘UIPZIH Sr~H,p,In gl:,
2r € My =, | H,q,]In €, = MH,q,Ing,
For isotropic materials,
O, =0, =0, 0';‘=—7[Lr(flcosl9+fzsin0) (57)
o 1 [(K+l)lnr -(xk -1 _ -2sin’0  sin20 ||[ f, (58)
8nG || (k-1DO (x+1)Inr sin20  2sin’@ ||| f,
K=3-4y

13



By superimposing the actual field on the auxiliary field, and using the path-independent J-
integral for the monoclinic elastic cracked body, it can be proved that

J,=J+Ts fi+of,

Ju=Ts/ fi+tof, (59)

Note that because o o< r™', u' o< r™

J, = Jr (W" n —tlu )ds =0

Kfouri (1986) used the method to calculate the T-term for isotropic materials. Wang et al.
(1980) and Wu (1989) applied the J-integral to determine the stress intensity factors for
rectilinear anisotropic solids and general anisotropic materials respectively. In this report, the
method is extended to determine all the coefficients in the crack tip field expansion for
monoclinic materials. From eq. (59), it follows that

JM’fzzo JM|f1=0

T-= and @=

i fy 1>
Detailed proof of eq. (59) is given below:
For general anisotropic linear elastic solids, we have the following relations

a —
0,& =¢;

a _ a a _ a
i €€ =0, €, and 0,€; =0,u,

G,
where ¢, = ¢,;. From eq. (50),

1 [ duia
JM::L(ogualh-4,%;—tfum)¢s=jr«;27£;—tf%J)ds (60)
where du;' / ds is the tangential derivative of u' . As r — 0, we evaluate J,, and note that the

only terms that contribute to J, are the cross terms between 7 and J. After substituting these
fields into the integral and performing the routine algebra, the integral J,, may be evaluated as

a
i

o tlu,)ds

du
= [ 0 Ty ds
: \

— 2) 4a
=] u e as 61)
=—] @®)" ¢ as
= —(u‘(lz))TJ'r t' ds
= (u,(IZ) ) d f
In the above derivation, eq. (22) has been used. From €q. (33) and (39) via (12),,
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o Ts/
u’(12) — _lL 1 g2 :[ a)]l} (62)
Insertion eq. (62) into (61) leads to
Jy=-ig; L' f =~if"L''g, (63)
and Jy=Ts, f, +of, (64)

Eq. (63) and (64) can be used to calculate grand T. As fis arbitrary, it is convenient to
choose f to be the following values

[1.01" =e,, [0,1]" =e,

respectively. Note that e, has a dimension force/length. Correspondingly, eq. (63) yields two
linear equations and they are, in matrix notation,

J~M =—i L"g2
where
Ty =11, 307

and J ,ﬂf) is the value of J,, when Jf = ex. Therefore,

g, =iLJ, (65)
Using eq. (64), The T-stress and o can be obtained as
T=JPIs,, @=J (66)

However, the choice of auxiliary field is not unique. For instance, we may choose the
auxiliary fields as the sum of the field (0’,u’) for the point force f and a field (c”,u”) which is

a known solution for the same cracked body under some loads on the outer boundary, then

O.a =O./+O.”
ua = u/+u// ?

Superimposing the actual field on the new auxiliary field, we have

Jlo+o'l=Jlol+J,[6°]1+J,[0,0°] (67)

From the definition of Ju,
Iulo,0%1=J,l0,0"+06"1=1,[0,0']+ J,lo,0”] (68)
Iulo,0”"1=J [0 +0"1- J[c]- J[o”] (69)

In elastic materials, J is equal to the energy release rate G in the absence of body forces and
dislocations and is related to the stress intensity factors (see Appendices B and C) through
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G=—k"L'k (710)

Therefore, eq. (69) leads to
Jylo,oc”1=k"L'k” (71)
where k is the stress intensity factor for the state (o,u),and k” for(c”, u”).
Using eq. (71) and (64), eq. (68) can be expressed by
Julo,c“1=Ts| fi+of, +k"L'k” (72)
Inserting eq. (72) into (67) and utilizing eq. (13) yield

Jo+o]= J[O']+Ja[0'“]+Ts1’1 f1 +a)f2 (73)
51 Tl + 1y e+ (R k4 KK+t (I + )k, k7]

For isotropic case,
Jlo+o'l=J[o]+J [0°1+Ts], £, +0 f, ++2s] (k, k| +k,k]) (74)

For plane strain under mode-1I loading, if S=(f1, 0), then eq. (64) and (74) reduce to the results
given by Kfouri (1986) and s/, = (1-v?)/E

(b) The third term

The third-term coefficient in the asymptotic solution can be also obtained from the J-
integral method. An auxiliary field with singularity o ~ O(r™")can be introduced by selecting

m =3 in eq. (42). By superimposing the actual field (the mixed mode boundary value problem)
on the auxiliary field, the interaction integral Jys may be evaluated as

J, = -gnhgz;'& (75)
Following in a similar manner,
Y (76)
8 3g M

where J,, =[J", J®1" and J3¢ is the value of J,; when h,=e,,(k=1,2).e has a dimension
of force/(length)” 2,

In general, superimposing of an auxiliary field with O, o< r®+ on the actual field and

applying the J-integral to this combined state with derivations proved in Appendix D for  # 2,
we can get the interaction integral J,, denoted by Ju., that is

Jun =—2m6,(5, +DhL'g,, n=1,3,4,5, .. (77)
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Then

Ly
—— n=1,3,5,...
_ ] 2md,(8,+1) (78)
"] oLy,
n=4,6,8,- ..

2m3,(8, +1)’

where

T I}] 9T
JMn =[J1(Wn ? JMn]

and Jy;) is the value of J,, when

e, n=1,3,5,.
h,=1.
te,, n=4,6,8,-.

Here, e, possesses dimension force / (length)'~ . For the first singular term, introducing stress

intensity factors, k = [k, .k,1" = /7 /2 g for the actual field and k* = [k% ,k*]" = /7 /2 h, for
the auxiliary field, Ju; and k can be rewritten from eq. (77), (78) as

I =k Lk

A

k=LJj,, (79

where J,,, =[J©  JOT ang Jyi is the value of J,, when k* =e,.

Betti’s Reciprocal Theorem
(a) T-stress Term

For a linear elastic plane problem, Betti’s reciprocal theorem can be stated as
J(eu =14 w)as=0 (80)

where C is an any closed contour enclosing a simple connected region in the elastic body; u is the
displacement vector and ¢ the traction on C corresponding to the solution of any particular elastic
boundary value problem for the elastic body; u* and ¢* are corresponding quantities of the
solution of any other problem for the body. Considering a crack in an anisotropic linear elastic
material, and suppose the crack surfaces are free of tractions for both elastic states. If the closed

contour C encloses the crack tip and extends along the crack surfaces, then it can be shown that
the integral

I=[ (t-u® =t u)ds @81)

is path independent where I'is an any path which starts from the lower crack face and ends on
the upper. Let (¢, u) be an actual state for the crack under consideration, then eq. (81) provides
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sufficient information for determining the amplitude for each term in the asymptotic crack-tip
fields if proper auxiliary solutions (¢*, ") are provided. In this section the Betti’s reciprocal work
contour integral is used for computing stress intensity factors, T-stress and other higher-order
coefficients for monoclinic materials. The procedure can be evaluated from the analysis as
follows.

For determining the coefficients g, of the term r* (§, > -1/2) in the actual crack tip stress
-5

-5,-2

field, an auxiliary (pseudo) field with Oy o<r or u' o< r~*'can be chosen. As r —0, take a

I"as a circle around the crack tip and evaluate integral I. When r — 0, the only product between
8. and the auxiliary terms in the integrand given above can contribute to the integral 1. Therefore,
the expression for I = I(g,) can be obtained as » — 0. The value of I for a finite contour I" shown
in Fig. 2 is available from the numerical solutions for # and u of the boundary value problems and
the exact auxiliary solution. The g, can be computed from the expression for I = I(g,) and the
value of I.

To determine the T-stress or g5 for the crack-tip field from eq. (34), the auxiliary elastic
field with stress singularity O o< ¥ as r — 0 is used and can be obtained from the eq. (42) by

choosing m = 4, that is, in Stroh formalism,
ut = Re[A<z‘1>B'1h4]

o =Bl (82)

The moment about x;-axis applied at the crack tip, using eq. (23) and (82), is given by
M=-2rih,

When I'shrinks to the crack tip, it is clear that only those parts of the integrand in eq. (81) which
behaves like O(1/r) as r — 0 can contribute this portion of the integral. Substituting these fields
of the two states into eq. (81), performing the integration for the circle surrounding the crack tip
and evaluating the results in the limit of vanishing radius, the results may be derived, and

I=lim[ (-0 ~¢" ulis=-2nh'Lg, (83)

ro0 JI

g,=—LT (84)
2r
where T =[IV, 1] and I is the value of ] when h, =ie,, (k=1,2). (Dimension of e is
force).

From eq. (13), (41), and (84),
o 1(2)

IT'=——rr, o=—
21 s, 2r

(85)

For isotropic materials, the auxiliary displacement vector and stress functions can be modified as
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i l1+cos280  sin286
@+ = SO Imlh, ] (86)
r sin 26 1-cos20
o) e 2cos30 cos —sin460
ol | = | - 2sin3@sin®  2(cos26 —1)sin26 |Imlh, ] (87)
o —sin46 —2sin30sinf

]Im[h4] (88)

us __4Gr (k =1)sin@ —cos20sinf  —(k+1)cosf@ —2sin20sinf

[ul“] 1 |:—(K+1)cose+251n205in9 —(k-=1)sin?®} —cos28 sin 9

Then the path-independent integral / has the same form as eq. (83). Eqs. (84) and (85) are still
valid.

(b) The Third Term

The coefficients of the third term in the eigenfunction expansion of the stress field can also
be obtained using Betti’s theorem. Selecting m = 5 in eq. (42), an auxiliary field with stress

singularity o ~ r~'* desired for this purpose can be obtained. Applying the Betti theorem of
reciprocity to the actual field and the auxiliary field and evaluating the integral / as " — 0 near
the crack tip, we obtain

I=-3nhlL'g, (89)

Eqs. (89) will be used to calculate g; for mixed-mode problem when the two proper auxiliary
field solutions are provided. g3 can be expressed in the form

g =———LT (90)
3r
Applying Betti’s reciprocal theorem to the actual fields and auxiliary fields with

0'; oc A2 the path independent I denoted by ., can be evaluated by

In+2 =-2n (6n +1) hnT+2 L 8, oD
It follows from eq. (91)
_2”1(4%1_), n=1,3.5,...
8= i ©2)
_&7 n=2’ 4’ 65
2r(6, +1)

where
I,=[I", 1?7

j ’

and I3 is the value of I, when
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e, n=1,3,5,-
h, =1,
ie,, n=2,4,6,-

Here, e, possesses dimension force x (length)® . The detailed proof is shown in Appendix E.

For the first singular term from eq. (91) and (92), I, and k can be written as

IL=-mhlL'g =—\21 k'L k (93)

k=--—LT, (94)
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Appendix A
Deformation Field for Degenerate Materials

The solutions for the nongenerate materials can be modified so that they can be applied for
degenerate materials. We write the general solutions for nongenerate materials as

u= Re[AB"X(z)g]
D =X(z)g

where
X(z)=B(f(2))B™
In the limit 4, =y, =y, it can be proved that the matrix reduces to
X@=f@I +x,f'(z)V

where z = x; + 1 x;

Hence, for isotropic materials, we can obtain
u=— Re{[f (E —ix, f"(2)V] g}
2G

@ =[f @I +x,f(2V]g

£ 1 —i2s), sl’1+s1’2 v i -
_sl'l—sl’z = (s/; +5),) —i2s) =1 -

For a crack in isotropic materials, choosing f{z) = 7%/ and performing routine manipulations, the
crack tip fields can be represented as

where

50mm2 e . ‘ o
o, 200" '+8,e % 0ging 0o +8, 280l g g
B (8,-1)8 . ; ; -n8] . &n
O |=D.(8, +1)r* Re -6, sing % —§ o1+6,18] i o [ " :I
n i858 /2 - . (5 — . 8
o, €%? 4§ Mol o ~38," > ging "

”1 _ zﬂRe (K. + 1)e~1[n/2—(§,,+1)6] + 2(6’l + 1)€i5,,€ Sin9 (K - l)ei(ﬁ,,+l)8 + 2(6’1 + ])ei(lr/2+§,,6‘) Sin9 g,,l
4G = (K =De ™" £ 2§+ 1)e" >4 gin g (K + 1)e 1"/ 3 Carad =206, +De™sin@ || g,,

where k¥ =3 -4y for plane strain; x = (3 - V) / (1+ V) for plane stress.
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Appendix B
J-integral
The J-integral with a contour I" around a crack shown in Fig. 2 can be written as
J= J‘F(Wn1 —tu,,)ds

1 du.

_lye v T
= —2—_L(‘l:2 du—t u,)ds
Substituting the expressions forg, = ¢, u and ¢ and using the orthogonality relations
B'A+A"B=1, B'A+A"B =0 (B2)

J can be further expressed by

1
J =

= Re{; 2 gl B <(5m +1)(8, + D[ dz> B g,,} (B3)

It can be readily shown that

1
[ 2w dz, =In(ry/r)+i2n 8, =8, = -5 (B4)
The term contributing to J is the first term and
1 . T p-Tp-l 1
J =BRC{[ln(rz/rI)+127r]gl B7B'g,} (B5)
By the use of the identity
BB =-2iL" (B6)
eq. (B5) becomes
| ) - 1 _
J =§1m{[1n(r2/r1)+12n]g{L‘g, }=ZngL]g1 (B7)
The above derivation has used the real values of g, and L. Since
2
g = ;k (B8)
we have
J =%kTL"k (B9)
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Appendix C
Energy Release Rate G

X
u(r,+rm)
i
r
f-— da L
%
Aa-r
A
7,(4a-r,0)

Fig. 3 Crack opening displacements for the extended crack and stress distribution
ahead of the crack tip prior to crack extension.

Irwin (1957) realized that if a crack extends by a small amount Aq , the energy absorbed in
the process is equal to the work required to close the crack to its original length. Using a polar
coordinate system with the origin at the extended crack tip, the energy released for a unit area to
extend is written as

. 1 (aa
G = lim —— [ onba-r0)u,(r, 1)~ u,(r~m)dr (C1)
where G is the energy release rate; Aa is the crack extension at the crack tip; O0,(Aa - r,0)are

the stresses prior to the crack extension; u,(r,% 1) are the displacements due to extension. (C1)
can be rewritten by
Aa

L 1 r
G= EI—I}()E 5 7, (Aa - r,0)[u(r,m) - u(r,—m)]dr (C2)

By Stroh formulation, the stress vector T, is written as

.(r6) =9, =Re Y B((, + 1)z \BIg,

m=1,2,3,.-



Along the crack plane, 6 =0,
T,(Aa-r0)= (8, +1)(Aa-r)Relg,]

m=1,2,3,-

.6, +D(Aa~r)g, (C3)

m=1,35,.

o1 g
(j+2)(4a—r) "2

j=0,1,2,

Note that g, is pure imaginary for m = 2, 4, 6, ---. For the displacement vector u,
u = Re| ZA<2‘S”“>B_1 g1
n=1,2,3,--

At the crack flanks,8 = +7,

+i 5,+1 5,41 i(8,+1
Z=rcos(tm) = re™", 0" =yt gHOntDm

Thus
Au=u(r, ) —u(r,-m)
= Re{ z [A<r5,,+lei(5n+1)7r _ pOuHl mi(8 D >B_1gn 1

n=1,2,3,.-

=Re{ ) r*2isin[(5, +)r]AB g, }

n=1,2,3,-
=2 3 (<) Re[L —iSL g, €4
n=1,3,5,-
= 2 (_1)(n—l)/2L—1gnr5 1
— 2 Z(_I)IL-lg21+lrl+I/2
1=0,1,2,

where the identity — AB™' = SL"' +iL " has been used in deriving eq. (C4).
Substituting (C3), (C4) into (C2)

_ Aa : r
—Alllll_l}oﬁ_zzz(J"' =) (=D g2,+1L gzmjo rl(Aa‘r)JVAa_rdr (C5)

Introducing a nondimensional variable, x = r/Aq

G = lim Kzzzu $ 21 gL, I g (Aa) " [+a-x 2 —dx
In the integrand, the linear term of Aa corresponds to the first term orj=1=0
|
= lim —[gl L' g Aa —+ o(Aa)]
Aa—0 ZA 2 (C6)

=—kTL‘1k
2
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For the monoclinic solid with plane of symmetry at x3 = 0, L™ under in-plane deformation can be

expressed by
b d
= S;I[ } (CT7)
d e

JIRE TR =a+ib,‘ul‘u2 =c+id
e=ad —bc = Im[.unuz(‘nx +0,)]

1, b dilk
-kt 4T

= %s{l lek] + 2dk k, + bk; ] (C8)

1, _
= E S {Im[/*tuuz (I, +1,)] k12 +2Im(p, i, )k ky +Im(y, + 1, )kzz}

This expression can be reduced to orthotropic solids without cross term of &, and k; in eq.
(C8). This special case has been formulated from Lekhnitskii formulation and the results are
shown in eq. (26) of ref. (16) by G. C. Sih, P. C. Paris, and G. R. Irwin.
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Appendix D

Determining the Unknown Coefficients in the Crack Field Using the J-integral

The path-independent integral J,, from eq. (60) is

def
Jy = J‘F(O'i2 _ds—_ti u,)ds

Let the actual and auxiliary crack fields

@ =Y B(f,(2))B'g,

@' =B(f"(2))B"'h
where

fn(z)=zan+l’6n=(n_2)/29 n=1,2,3,"‘.
fa(z) = ZA,,,+1 , Am = —m/z’ m= 1’ 3, 4’

From the identity
1 _ 1 —
Re(C)Re(D) = 5 Re[(C+C)D]= ERe[C(D +D)]

where C and D are complex matrices, we have
0, du =du/ Re[®,  ]=d(u* ) Re[D ]
=d[Re(AB™'®)"|Re[®, ]
1
= ERe[(AB“‘d(D" YD, +c.c)]

and

a

a dq)t
1 u;, ds =—Re( s u, , ds

=-Re(d®“)" Re[AB™'®, ]

B “%Reudcb“)T(AB“@,l +e.c)l

where c.c. denotes the complex conjugate of the preceding term, i.e.,

F+cc=F+F

Therefore
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J, = Re{ J.r[(AB‘ldCI)“)T(CDJ +c.c.)+(dD*) (AB™'®, +c.c. )]}

i

1
2
%Re[; jr (k" BT (df )A"B(f)B'g, +h"B7(df“)A"B(f/)B "
+h"B7(df*)B"A(f\B"'g, + k"B (dr)B"A(7))B'g, )]
= %Re[z’l: [ (R BT (dr*)\a"B+ B a)(f\B g,
+h"B7(df*)A"B + B"A)(F)B'g,)]

Using the orthogonality relations in eq. (10) and (11),

A'B+B"A=1 and A"B+B’4 =0, (D7)
Ju can be further rewritten as

J, = %Re[z_[FhTB‘T<df”><fn’>B“'gn]

. ’ (D8)

s S oo,

Defining

m = [ GO (@) = @B+ 108, + D] 2,

it is readily shown that

(@ n=mord +A, +1=0,

Rmn = (6n

+DlIn(r, / n)+i2x];

m

===5, (5

m m

(b)y n#morg, +A, +10,

6, +DR2-m)
Rmn [N A— {[rz(n—m)/Z _ r[(n—m)/Z ] COS(n - m)n / 2 +l~[r2(n—m)/2 + rl(n—m)/2 ] Sin(l’l _ m)n, / 2}

n—-m
ie.
(0, +D(2-m
(—I)J ( )( )[ (n— /11)/2 (n—m)/Z] for n—m= 2j
R =
5 + D2
i(— 1)’( n)(m m)[ (n~ m)/2+rl(n—m)/2] for n-m=2j+1

Using R, and the identity
BB =-2iL"

denoting J, as J,,,, h as hn, eq. (D8) becomes
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1
JMI?Z = ERC[Z Rnlnh:B_TB_lg’l}

= %Re[z R, (-20)h L™ gnjl = Im|:z R, KL g,,}
=ImR, ,L"g, |+ Y Im(R, L7, + Y Im(R,hiL"g,)

mm-m

n=m+2j nxm n=m+2+1

The last two terms of the above equation are zero. Thus the term contributing to the J,,, is the
term between g, and hp, only, and

Jyw=Im[R, b, L'g,]

=h,"L" g, Im{-6,(5, +Dln(r, / r,)+i2x]}, n#0
=-2rn6,(5,+)h, L' g,

or
Jyn="278,(8,+)h L' g (D9)

As h, is arbitrary, we choose

e, n=1,3,5,-
h =9,
ie,, n=4,6,8,.

Here, ey (k = 1, 2) possesses dimension force / (length) =0,

. Therefore, for a given n, there will be
two different values of J, denoted by J |, and J{;, correspondingly. For the two choices of k,,

eq. (DY) leads to

LTy, 1,3,5
TN e o n= ) ) P
2
g = 7?5n(~5,, +1) (D10)
lLJMn
n=4,6,8,--

2m8,(8, +1)’

where

T _ ()] (24T
JMn - [JMn ’ JMn]
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Appendix E
Determining the Unknown Coefficients in the Crack Field Using Betti’s Theorem

Following arguments similar to those presented for the J,, integral in Appendix D, one can
get the expression for the integral /. The path-independent integral from Betti’s theorem is

1= ") t-(t*)" ulds (E1)

Using the complex potential functions, ® and ®* and identity eq. (D4),

(u®)tds =-Re(AB'®")" |Re[d®D]

) L . (E2)
= -5 Re[(AB™'d®" +c.c.)" d®]

(t*)"u ds = ~Re(d®*)" Re[AB™'®]

= —%Re{[d(d)“ +c.c.)"JAB7'®} (E3)

1
= —ERe{a’[(d)“ +c.c) AB7'®]— (®° +c.c.)" AB”'dd)}

(rzyﬂ')

jr(t“)Tu ds = ——;—Re{[(tb" +c.c.))"AB™'®]

- fr(d)" +cc)TABTdD)  (E4)

(n—m)

According to eq. (19), the traction free conditions on the crack faces for the auxiliary field may
be written as

Re[®“(2)]=0 or ®“ +c.c.=0 at O =+x.

Therefore the first term on the right hand side of (B4) vanishes and
1
jr(t")Tu ds:ERe[JF(Q" +c.c.))" AB7'd®d] (ES)

Substituting (E2) and (ES) into (E1) and using the expressions for @ and @° (eq. (D2) and (D3))
yield

I = —%Re{jr(AB*cb” +c.c.) dd + (®° +c.c.)TAB"d<I>}
= —%Re[;jr h'B7(f")A"B{df,)B'g, + k"B (F*)A"B{df,)B g,

+h"B'(f")B"A(df,)B g, + k"B (7*)B" A(df,)Bg, ]

I= —%Re[;.fr h"B7(f“)ATB+B" A)(df,)B g, +

[F"B(F*)ATB+ BT A)dr,)B g, |
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Using the orthogonality relations, eq. (D7),

I= —%Re{z’l: [ hTB_T<f“><df,,>B_1gn:l

1
“_———Re hTB—T fa(z)dfn(z) B—lgn (E6)
2 - r
where
fr@=z"" A, =-m/2, m=1,3,4,-.
Defining
= a — 8,+4,,+1
Q. =[ £ (2)df, () = @6, +1)] 23 de,
it is readily shown that

@ n=m-2or§,+A, +2=0

a___(a

n—

Q2 =8+ D007, /1, +i27) ;

dz
o

®)n#zm-2o0r §,+A, +2%0

6, +1 .
Qm,, - _2 - _m+2 [(rz(n—m+2)/2 _ rl(n—m+2)/2 ) COS[(n _m)n/2]+i(r2(n—m+2)/2 + rl(n—m+2)/2 ) Sm[(n—-m)ﬂ'/2]} ,
a0 +D) - _ ,
(_1) Jj+l 2 . nm " 2 (rz(n m+2)/2 _ rl(n m+2)/2) fOI‘ n—m= 2]
re. Q = -
(6 +1
21 (_1)‘/+1 (nﬁ)z(r2(n—m+2)/2 + rl(n—m+2)/2) for n—m= 2] + 1

n—m+

Using Q,,, and expression for L™, writing [ as I, and h as hy, the I -integral from eq. (E6), for a
given 4A,, becomes

1
I = —ERe{z Q,.h.B'B'g )

|
=~ Re(2.0,, (20 L7, } =~m(Y. 0, WL 7g,]
= _Irn{Qm, nl—Zh;L_lgl11—2} - IH] 2 {an hr:L_lgn} - IIn z {an hp:L_lgn }

n
n=m+2j, n#Em-2 m=m+2 j+1

Since the last two terms of the above equation are equal to zero, it can be clearly seen that the
term contributing to the 7 is the cross terms between gm-2 and Ay, only.

Thus

I, = —IIn[Qm'm‘thTL_Igm_z] = —hm TL—lgm_2 IIn{(5m_2 + 1)[11’1(1”2 /r, )+i2r]}
=-27n(6,,+Dh, L'g,
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or l,.,=-2n(5,+h,,, L' g, (E7)

n+2

From eq. (E7), following a similar procedure as before, g, can be expressed by

Lin+2
- 7’l=1,3,5,“'
_) 2w+ (E8)
" iLT
20 4,6,
27 (8, +1)

where

I.,=0%, 127

n+2 > L p+2

I%) is the value of I,,, when

h =

n

e, n=1,3,5;-
ie,, n=2,4,6,-

Here, ex possesses dimension force x (length)® .
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